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A SUPPLEMENTARY EXPERIMENTS FOR SEC. 4.1
We show the issues seen in Sec. 4.1 can happen even when using parametric UMAP (PUMAP) with a smaller NN. While the default PUMAP
employs an MLP with three 100-neuron hidden layers, here we use an MLP with only one hidden 4-neuron layer. As in Sec. 4.1, Fig. A.1
shows the results after applying the PUMAP to the Wine dataset and performing adversarial attacks. In these results, we can see similar patterns
to Fig. 3, indicating that the close-to-linear mapping exists even when using a small NN.

Figure A.1: The investigation of the one-attribute attack on the PUMAP using a small MLP (one hidden 4-neuron layer) and trained with the Wine
dataset: (a) a scatterplot obtained by applying the PUMAP and (b) the input coordinate migration in response to the perturbations to flavanoids.



We further demonstrate and analyze adversarial attacks on two additional datasets: the breast cancer dataset1 and the handwritten digits
dataset.2 The breast cancer dataset consists of 569 instances/masses, 30 attributes, and 2 labels (malignant or benign mass). The handwritten
digits dataset consists of 1797 instances/handwritten digits, 64 attributes/pixels, and 10 labels corresponding to different digits, 0–9. For each
dataset, we apply PUMAP with the default setting, perform one-attribute attacks, and analyze attack results as in Sec. 4.1.

Fig. A.2 shows the results for the breast cancer dataset. In Fig. A.2-a, one arbitrary benign mass is selected as a benign input and the
adversarial counterpart is then crafted by adding a value of 15 into the benign input’s mean cocavity. We can see that the adversarial input is
projected near malignant masses. Similar to the analyses in Sec. 4.1, we can observe that, even for this dataset, the trained PUMAP shows a
close-to-linear response to the perturbation to mean cocavity (see Fig. A.2-b), which has a clearly different distribution for each label (see
Fig. A.2-c). Also, from the result in Fig. A.2-d, where we perturb both mean cocavity and mean texture, we can expect that, by adjusting
mean cocavity and mean texture, adversaries can place an adversarial input to their desired coordinate as in the attack using a substitute
model in Sec. 4.1.

Figure A.2: The investigation of the one-attribute attack on the default PUMAP trained with the breast cancer dataset: (a) a scatterplot obtained
by applying the PUMAP; (b) the input coordinate migration in response to the perturbations to mean concavity; (c) the value distribution of mean
concavity for each label; and (d) the input coordinate migration when perturbing mean concavity (from 0 to 25) and mean texture (from -10 to 10).

1https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
2https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits



Fig. A.3 shows the results for the handwritten digits dataset. In Fig. A.3-a, one 0 digit is selected as a benign input and then an adversarial
input is crafted by adding a value of 20 into the benign input’s pixel 3 4. We can see that the adversarial input is projected near 8 digits. As
in the other analyses, the trained PUMAP shows a close-to-linear response to the perturbation to pixel 3 4 (see Fig. A.3-b). As shown in
Fig. A.3-c, pixel 3 4’s distribution is clearly different between digits {0, 6} and {1, 2, 3, 7, 8, 9}. Also, from the result in Fig. A.3-d, we can
expect that, by adjusting pixel 3 4 and pixel 6 6, adversaries can place an adversarial input to their desired coordinate.

Figure A.3: The investigation of the one-attribute attack on the default PUMAP trained with the handwritten digits dataset: (a) a scatterplot
obtained by applying the PUMAP; (b) the input coordinate migration in response to the perturbations to pixel 3 4; (c) the value distribution of
pixel 3 4 for each label; and (d) the input coordinate migration when perturbing pixel 3 4 (from 0 to 40) and pixel 6 6 (from -16 to 16).

Furthermore, as shown in Fig. A.4, we perform attacks on a different parametric DR method—parametric t-SNE implemented by Lai et
al. (https://github.com/a07458666/parametric_dr). The results in Fig. A.4 indicate that even for parametric t-SNE, adversaries can
perform effective attacks. However, as Lai et al.’s implementation uses the sigmoid activation function (instead of rectified linear activation
functions used in PUMAP), parametric t-SNE shows less linearity when compared with PUMAP. Note that we also applied Lai et al.’s
parametric t-SNE to the Wine and breast cancer datasets; however, it did not produce reasonable low-dimensional representations for these two
datasets (e.g., every instance is aligned along one line).

https://github.com/a07458666/parametric_dr


Figure A.4: The results of attacks on Lai et al.’s parametric t-SNE implementation using the sigmoid activation functions [43]: (a) a scatterplot
obtained by applying the trained parametric t-SNE to the handwritten digits dataset; (b) the input coordinate migration in response to the
perturbations to pixel 7 6; and (d) the input coordinate migration when perturbing pixel 7 6 (from 0 to 40) and pixel 5 3 (from -4 to 10).



B SUPPLEMENTARY EXPERIMENTS AND INFORMATION FOR SEC. 4.2
As an additional example of the attack on MultiVision, we use the Penguins dataset,3 which consists of 344 instances and 7 attributes with
several missing values. As shown in Fig. B.1-a, MultiVision recommends useful charts for understanding this data. The multiple stacked
histograms (a1) depict value distributions organized by three nominal attributes, Sex, Species, and Island. The two bar charts (a2, a3) inform
Beak Depth and Beak Length differences by Sex. Similar to Sec. 4.2, to generate an adversarial input, we add an empty column into the data
table and a blank space for a randomly selected row of the empty column. Note that our attack succeeded even without adding a blank space.
However, in this case, MultiVision caused an execution error due to the zero division during the feature extraction and did not generate any
charts. Fig. B.1-b shows the recommended charts for the adversarial input. While the top-recommended chart is still the same as Fig. B.1-a, the
second (b2) and third (b3) charts do not convey meaningful information. We also investigate the cause of the issues by checking MultiVision’s
intermediate outputs. We notice that the y-axes in Fig. B.1-b2 and b3 represent the empty column we added, while this information is not
visible from the charts due to the Vega-Lite specifications (i.e., Data-VIS Mapping process helps adversaries hide the cause of this issue). We
further observe that the empty column is categorized as a nominal attribute and assigned high importance; consequently, the empty column is
selected for chart generation.

As in Sec. 4.2, based on the gradient information indicating the high influence of column idx normed, we shuffle the order of columns,
resulting in the recommendations shown in Fig. B.1-c. While Fig. B.1-c1 is still a similar visualization to Fig. B.1-a1, the other recommended
charts do not show useful information due to the overplotting.

Figure B.1: The top-3 recommended charts by MultiVision for the Penguins dataset; (a) before and after (b) adding one empty column and (c)
shuffling the column order. The charts are placed in order of the recommendation ranks (i.e., a1: the first, a2: the second, a3: the third). Note that
we show the generated charts as they are, even though the legends located in b2, b3, c2, c3 do not match with the employed visual encodings.

3https://github.com/mwaskom/seaborn-data/blob/master/penguins.csv

https://github.com/mwaskom/seaborn-data/blob/master/penguins.csv


We here provide the full-size charts corresponding to Fig. 8-b1, b2, and Fig. 9.

Figure B.2: The full-size charts corresponding to Fig. 8-b1 (top) and b2 (bottom).

Figure B.3: The full-size charts corresponding to Fig. 9.



As the supplementary information of Table 2, we here list the gradients (Table B.1) and the meanings (Table B.2) of all the column features.

Table B.1: All column features’ gradients corresponding to Table 2.

year life_expect fertility year life_expect fertility year life_expect fertility year life_expect fertility
column_idx_normed -0.06 -0.63 -0.48 -0.06 -0.63 -0.48 wordEmb0 0.02 0.17 -0.11 0.02 0.17 -0.11

dataType_normed 0.02 0.03 0.18 0.02 0.03 0.18 wordEmb1 -0.03 -0.27 -0.41 -0.03 -0.27 -0.41
aggrPercentFormatted -0.05 -0.10 -0.22 -0.05 -0.10 -0.22 wordEmb2 -0.01 0.03 0.28 -0.01 0.03 0.28

aggr01Ranged -0.04 -0.34 -0.19 -0.04 -0.34 -0.19 wordEmb3 -0.02 -0.32 -0.47 -0.02 -0.32 -0.47
aggr0100Ranged -0.02 -0.06 -0.04 -0.02 -0.06 -0.04 wordEmb4 -0.04 -0.08 0.13 -0.04 -0.08 0.13

aggrIntegers 0.00 -0.09 -0.21 0.00 -0.09 -0.21 wordEmb5 -0.01 0.37 0.17 -0.01 0.37 0.17
aggrNegative -0.02 -0.25 -0.17 -0.02 -0.25 -0.17 wordEmb6 -0.01 0.07 0.01 -0.01 0.07 0.01

aggrBayesLikeSum 0.00 0.03 0.02 0.00 0.03 0.02 wordEmb7 -0.01 0.34 0.16 -0.01 0.34 0.16
dmBayesLikeDimension -0.01 0.01 -0.02 -0.01 0.01 -0.02 wordEmb8 0.06 0.32 -0.25 0.06 0.32 -0.25

commonPrefix -0.03 0.07 0.04 -0.03 0.07 0.04 wordEmb9 0.00 0.15 0.34 0.00 0.15 0.34
commonSuffix -0.02 0.06 0.08 -0.02 0.06 0.08 wordEmb10 -0.02 0.59 0.60 -0.02 0.59 0.60

keyEntropy 0.05 0.18 -0.05 0.05 0.18 -0.05 wordEmb11 0.03 -0.14 -0.39 0.03 -0.14 -0.39
charEntropy 0.00 0.04 0.13 0.00 0.04 0.13 wordEmb12 -0.02 -0.37 -0.02 -0.02 -0.37 -0.02
norm_range 0.00 -0.13 -0.03 0.00 -0.13 -0.03 wordEmb13 0.01 -0.05 -0.11 0.01 -0.05 -0.11
changeRate 0.01 0.24 0.00 0.01 0.24 0.00 wordEmb14 -0.03 -0.65 0.39 -0.03 -0.65 0.39

partialOrdered -0.02 -0.40 -0.06 -0.02 -0.40 -0.06 wordEmb15 0.00 -0.34 -0.30 0.00 -0.34 -0.30
norm_var 0.00 -0.03 0.00 0.00 -0.03 0.00 wordEmb16 -0.01 -0.17 -0.13 -0.01 -0.17 -0.13
norm_cov 0.01 -0.11 -0.13 0.01 -0.11 -0.13 wordEmb17 0.02 0.09 -0.43 0.02 0.09 -0.43
cardinality 0.01 -0.02 -0.08 0.01 -0.02 -0.08 wordEmb18 0.05 0.01 -0.09 0.05 0.01 -0.09

spread 0.00 0.11 0.22 0.00 0.11 0.22 wordEmb19 -0.01 0.33 0.32 -0.01 0.33 0.32
major -0.06 -0.38 0.19 -0.06 -0.38 0.19 wordEmb20 0.02 0.49 0.07 0.02 0.49 0.07

benford 0.01 0.02 0.06 0.01 0.02 0.06 wordEmb21 -0.01 -0.46 -0.31 -0.01 -0.46 -0.31
orderedConfidence 0.01 -0.08 0.08 0.01 -0.08 0.08 wordEmb22 0.02 -0.34 -0.04 0.02 -0.34 -0.04

equalProgressionConfidence -0.02 -0.04 0.14 -0.02 -0.04 0.14 wordEmb23 -0.05 0.26 0.05 -0.05 0.26 0.05
geometircProgressionConfidence 0.00 -0.03 0.06 0.00 -0.03 0.06 wordEmb24 -0.04 0.77 -0.11 -0.04 0.77 -0.11

medianLength -0.03 -0.02 0.06 -0.03 -0.02 0.06 wordEmb25 -0.01 0.27 -0.29 -0.01 0.27 -0.29
lengthStdDev -0.04 -0.01 0.13 -0.04 -0.01 0.13 wordEmb26 -0.04 0.18 -0.62 -0.04 0.18 -0.62

sumIn01 -0.06 0.01 0.08 -0.06 0.01 0.08 wordEmb27 0.00 -0.42 -0.18 0.00 -0.42 -0.18
sumIn0100 0.00 -0.10 -0.02 0.00 -0.10 -0.02 wordEmb28 0.03 0.68 -0.06 0.03 0.68 -0.06

absoluteCardinality 0.03 0.03 -0.04 0.03 0.03 -0.04 wordEmb29 0.02 0.24 0.16 0.02 0.24 0.16
skewness 0.01 -0.03 0.01 0.01 -0.03 0.01 wordEmb30 0.01 -0.60 -0.17 0.01 -0.60 -0.17

kurtosis 0.01 -0.05 -0.05 0.01 -0.05 -0.05 wordEmb31 0.03 0.00 0.13 0.03 0.00 0.13
gini 0.00 -0.05 -0.06 0.00 -0.05 -0.06 wordEmb32 0.06 0.40 1.00 0.06 0.40 1.00

nRows 0.01 -0.08 0.00 0.01 -0.08 0.00 wordEmb33 0.00 -0.09 -0.05 0.00 -0.09 -0.05
averageLogLength 0.00 -0.08 -0.04 0.00 -0.08 -0.04 wordEmb34 -0.02 -0.03 0.01 -0.02 -0.03 0.01

dummy0 0.01 0.00 0.03 0.01 0.00 0.03 wordEmb35 -0.01 -0.17 -0.16 -0.01 -0.17 -0.16
dummy1 0.00 0.02 0.01 0.00 0.02 0.01 wordEmb36 0.03 -0.30 0.82 0.03 -0.30 0.82
dummy2 0.01 0.03 0.00 0.01 0.03 0.00 wordEmb37 0.00 -0.50 -0.03 0.00 -0.50 -0.03
dummy3 0.00 0.03 0.02 0.00 0.03 0.02 wordEmb38 -0.03 0.18 0.27 -0.03 0.18 0.27
dummy4 -0.01 0.02 0.01 -0.01 0.02 0.01 wordEmb39 -0.06 0.90 -0.28 -0.06 0.90 -0.28
dummy5 0.00 0.00 0.01 0.00 0.00 0.01 wordEmb40 0.02 -0.11 0.27 0.02 -0.11 0.27
dummy6 -0.01 -0.03 -0.01 -0.01 -0.03 -0.01 wordEmb41 -0.02 -0.08 -0.03 -0.02 -0.08 -0.03
dummy7 0.00 0.01 -0.01 0.00 0.01 -0.01 wordEmb42 -0.04 -0.59 0.42 -0.04 -0.59 0.42
dummy8 0.00 -0.01 0.01 0.00 -0.01 0.01 wordEmb43 -0.06 -0.07 0.04 -0.06 -0.07 0.04
dummy9 -0.01 -0.01 0.01 -0.01 -0.01 0.01 wordEmb44 0.06 0.26 0.30 0.06 0.26 0.30

dummy10 0.00 -0.02 0.03 0.00 -0.02 0.03 wordEmb45 -0.04 -0.17 0.58 -0.04 -0.17 0.58
wordEmb46 0.01 -0.17 -0.32 0.01 -0.17 -0.32
wordEmb47 0.01 -0.69 -0.03 0.01 -0.69 -0.03
wordEmb48 -0.01 0.02 0.10 -0.01 0.02 0.10
wordEmb49 0.04 0.07 0.00 0.04 0.07 0.00

Chart typeColumn set Column set Chart type

Table B.2: The meanings of column features.

Feature name Meaning Feature name Meaning
column_idx_normed Column index divided by # of columns spread Cardinality divided by the range of values
dataType_normed Data type ID divided by 5 (e.g., string, datetime, decimal) major Proportion of the most frequent value
aggrPercentFormatted Proportion of values formatted with % benford Skewness measured by Benford's law
aggr01Ranged Proportion of values within a range of [0, 1] orderedConfidence Indicator of sequentiality
aggr0100Ranged Proportion of values within a range of [0, 100] equalProgressionConfidence Confidence for a sequence to be equal progression
aggrIntegers Proportion of integer values geometircProgressionConfidence Confidence for a sequence to be geometric progression
aggrNegative Proportion of negative values medianLength Normalized median length of records
aggrBayesLikeSum (not computed based on Wu et al's implementation) lengthStdDev Standard deviation of lengths of records
dmBayesLikeDimension (not computed based on Wu et al's implementation) sumIn01 Sum of values within a range of [0, 1]
commonPrefix Proportion of the most common prefix digit sumIn0100 Sum of values within a range of [0, 100]
commonSuffix Proportion of the most common suffix digit absoluteCardinality Absolute cardinalitu
keyEntropy Entropy by values skewness Skweness
charEntropy Entropy by digits/chars kurtosis Kurtosis
norm_range Range of values gini Gini coeffcient
changeRate Proportion of different adjacent values nRows # of raws
partialOrdered Maximum proportion of continuously increasing/decreasing values averageLogLength Average length of records in log scale
norm_var Normalized standard deviation dummy0-10 -
norm_cov Normalized covariance wordEmb0-49 Word embeddig vector
cardinality Cardinality



C LIST OF PUBLICATIONS WITH PUBLICLY AVAILABLE SOURCE CODE

Table C.1 lists the ML4VIS works that incorporate neural networks and provide source codes for replicating their ML models. We created this
list by manually checking the contents of all full-length papers presented at EuroVis, PacificVis, and VIS from 2017 to 2022. Through this
process, we found 69 ML4VIS-related papers and identified 22 papers providing source codes. Among these, only several source codes and
pre-trained models were executable (after small modifications) with currently available programming libraries.

Table C.1: ML4VIS papers providing source code to replicate their neural network (NN) model, used datasets, and pretrained NN model.

Presented
venue

Source
code

Training
data

Trained
modelAuthors Title Year

Poco and Heer Reverse-Engineering Visualizations: Recovering Visual
Encodings from Chart Images

2017 EuroVis ✓ ✓

Berger et al. A Generative Model for Volume Rendering 2018 VIS ✓ ✓ ✓
Haehn et al. Evaluating ‘Graphical Perception’ with CNNs 2018 VIS ✓ ✓ ✓
Chen et al. Towards Automated Infographic Design: Deep Learning-

based Auto-Extraction of Extensible Timeline
2019 VIS ✓ ✓

Chen et al. LassoNet: Deep Lasso-Selection of 3D Point Clouds 2019 VIS ✓ ✓
He et al. InSituNet: Deep Image Synthesis for Parameter Space

Exploration of Ensemble Simulations
2019 VIS ✓ ✓

Wang et al. DeepDrawing: A Deep Learning Approach to Graph
Drawing

2019 VIS ✓ ✓

Lekschas et al. PEAX: Interactive Visual Pattern Search in Sequential
Data Using Unsupervised Deep Representation Learning

2020 EuroVis ✓ ✓ ✓

Fujiwara et al. A Visual Analytics Framework for Contrastive Network
Analysis

2020 VIS ✓ ✓

Engel and Ropinski Deep Volumetric Ambient Occlusion 2020 VIS ✓ ✓ ✓
Lu et al. Compressive Neural Representations of Volumetric

Scalar Fields
2021 EuroVis ✓ ✓

Luo et al. Texture Browser: Feature-based Texture Exploration 2021 EuroVis ✓ ✓ ✓
Madan et al. Parsing and Summarizing Infographics with Synthetically

Trained Icon Detection
2021 PacificVis ✓ ✓

Qin et al. A Domain-Oblivious Approach for Learning Concise
Representations of Filtered Topological Spaces for Clus-
tering

2021 VIS ✓ ✓

Luo et al. Natural Language to Visualization by Neural Machine
Translation

2021 VIS ✓ ✓ ✓

Wu et al. MultiVision: Designing Analytical Dashboards with
Deep Learning Based Recommendation

2021 VIS ✓ ✓ ✓

Zhao et al. ChartSeer: Interactive Steering Exploratory Visual Anal-
ysis With Machine Intelligence

2021 VIS ✓ ✓ ✓

Huesmann and Linsen SimilarityNet: A Deep Neural Network for Similarity
Analysis Within Spatio-temporal Ensembles

2022 EuroVis ✓ ✓

Shi et al. GNN-Surrogate: A Hierarchical and Adaptive Graph
Neural Network for Parameter Space Exploration of
Unstructured-Mesh Ocean Simulation

2022 PacificVis ✓ ✓

Shi et al. VDL-Surrogate: A View-Dependent Latent-based Model
for Parameter Space Exploration of Ensemble Simula-
tions

2022 VIS ✓ ✓

Wang et al. Towards Natural Language-Based Visualization Author-
ing

2022 VIS ✓ ✓

Xia et al. Interactive Visual Cluster Analysis by Contrastive Dimen-
sionality Reduction

2022 VIS ✓ ✓ ✓
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